Seminario: Carlo Morpurgo

Sharp Sobolev inequalities on noncompact Riemannian manifolds with bounded Ricci curvature

Martedì 13 Gennaio 2026, alle ore 15:30 in Aula U1-03 (Piano -1 | Edificio U1 | Piazza della Scienza 1, Milano), il Prof. Carlo Morpurgo (University of Missouri) terrà il seguente intervento

 

Titolo: Sharp Sobolev inequalities on noncompact Riemannian manifolds with bounded Ricci curvature

Abstract: Given a smooth, complete, Riemannian manifold (M, g), the Sobolev embedding W1,p(M) Lq(M), when valid, can be expressed via an inequality of type

uαq A∥∇uαp + Buαp,   1 p < n,   q = np / n – p  ,   α > 0.       (1)

The validity of (1), and the optimality of the constants A, B, have been widely studied in the late 1990s-early 2000s, notably by the schools of T. Aubin and E. Hebey, the creator of the celebrated “AB-program”. In this seminar, I will focus on the “A part” of this program, in particular about the validity of (1) when A = K(n,p)α, where K(n, p) is the sharp constant in the well-known inequality when M = Rn, with its standard metric. I will present some new results for noncompact manifolds subject minimal curvature restrictions. (Joint work with S. Nardulli and L. Qin)

 

Tutti gli interessati sono invitati a partecipare

Argomento