On Thursday 1st June at 11:00 in room U5-3014, prof. Andre Belotto da Silva from Université de Paris Cité will deliver a talk titled
On the minimal rank Sard Conjecture in analytic manifolds
Abstract: We will present our recent result in collaboration with Parusinski and Rifford, concerning the Sard Conjecture in analytic sub-Riemannian manifolds (M,D). When D is a corank 1 distribution, the minimal rank Sard Conjecture is equivalent to the Sard Conjecture.
More precisely, we will explain how the Conjecture can be interpreted as a geometrical problem concerning the behavior of a characteristic singular foliation in the cotangent bundle. Under the hypothesis of analyticity of M and D, we can study this singular foliation via methods of singularity theory, subanalytic geometry and control measure theory.
Under an additional qualitative property of the foliation which we call “splittable”, we provide a proof of the minimal rank Sard conjecture in the analytic category.
The seminar will be also broadcast on Webex ( https://unimib.webex.com/
All interested people are most welcome to attend.