Insalata di Matematica "Coincident root loci and the moduli space of rational elliptic surfaces"

-

Mercoledì  22 Marzo 2023, alle 5:00 pm (CET) in aula U5-3014, nel quadro della serie di seminari Insalate di Matematica, Simone Pesatori (Università Roma 3) parlerà di

Title Coincident root loci and the moduli space of rational elliptic surfaces "

 
Abstract
Elliptic fibrations are strongly characterized by their singular fibers. We analyze the moduli spaces of elliptic surfaces over the projective line \mathbb{P}^1 and construct a stratification of these spaces in terms of the singular fibers that the surfaces have. In order to do that we need to investigate a very natural problem. Let \mathbb{P}^d be the space parametrizing homogeneous degree d polynomials in two variables: what happens if the roots of the polynomials collapse? Given a partition \sigma of d, how is the locus in \mathbb{P}^d corresponding to polynomials having roots with the multiplicities prescribed by \sigma?
 
Per maggiori information, visitare il sito: https://sites.google.com/view/insalate-di-matematica o contattare insalate.matematica@unimib.it.
Argomento