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Insiemi e funzioni misurabili, 1904-1905

Nella nota (Rendiconti Circolo Matematico di Palermo) introduce
una nozione di misurabilità per sottoinsiemi A di un intervallo I
limitato, basata sulla disuguaglianza

L ∗(A) + L ∗(I \ A) = L ∗(I ) con L ∗ misura esterna.

In spazi astratti è meno restrittiva della nozione introdotta
successivamente da Carathéodory negli anni ’20 (si prende
X = {1, 2, 3} con λ(X ) = 2, λ(∅) = 0, λ(A) = 1 per tutti gli altri
insiemi A, sicché tutti i sottoinsiemi di X risultano misurabili) ma
ha comunque le stesse buone proprietà di stabilità insiemistica.

In una nota successiva (Atti Accad. Naz. Lincei) mostra che le
funzioni di Borel sono funzioni di Baire (quindi generabili a partire
da funzioni continue), l’implicazione inversa era stata dimostrata
poco prima da Lebesgue.
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Caratterizzazione funzioni Riemann-integrabili e Lebesgue
integrabili, 1903-1924

Nella nota del 1903 (Bollettino Accademia Gioenia di Scienze
Naturali in Catania) compare la famosa caratterizzazione delle
funzioni Riemann-integrabili in termini dell’insieme Σ dei suoi punti
di discontinuità (precisamente, si afferma che ogni suo sottoinsieme
C chiuso deve essere “rinchiudibile”).

Poi perfezionato nel 1904 (Rendiconti Ist. Lombardo sc. e lett.) in
termini di quella che oggi chiameremmo misura esterna.
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Caratterizzazione funzioni Riemann-integrabili e Lebesgue
integrabili, 1903/1924

Ritorna poi nel 1924 sul tema (Annali Mat. Pura e Applicata),
quando ormai la teoria dell’integrazione di Lebesgue era consolidata,
per mostrare attraverso le formule (per semplicità f ≥ 0)∫ ∗

f (x) dx =

∫ ∞
0

L ∗({f > t}) dt,
∫
∗
f (x) dx =

∫ ∞
0

L∗({f > t}) dt

che la definizione di integrabilità proposta da Beppo Levi implica la
misurabilità di f e quindi non può essere più generale di quella di
Lebesgue.
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Teorema di Lusin, 1905

In questa nota (Rendiconti Ist. Lombardo Scienza e Lettere), il
teorema è enunciato in questo modo:

ogni funzione di Borel è equivalente a una nella seconda classe di Baire

La costruzione passa attraverso quella che è ora la forma più
popolare del teorema, ossia che per ogni ε > 0 esiste K ⊆ Ω
compatto, con L 1(Ω \ K ) < ε, tale che f |K è continua.

La costruzione ricorda in qualche modo anche il cosiddetto teorema
di Egorov che, al prezzo della rimozione di un insieme di misura
arbitrariamente piccola nel dominio, consente di migliorare la
convergenza, da puntuale a uniforme.
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Insieme non misurabile secondo Lebesgue, 1905

In una breve nota di meno di 3 pagine, mostra con tale insieme che
gli assiomi:
• Invarianza per traslazioni
• Misura dell’intervallo [0, 1] finita e positiva
• Numerabile additività
non sono compatibili, se si vuole assegnare una misura a tutti i
sottoinsiemi di R.
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Funzioni assolutamente continue e funzioni integrali, 1905

In questa nota (Atti Accademia delle Scienze di Torino) è
dimostrata, per f : (a, b) → R, l’equivalenza tra la proprietà di
assoluta continuità, espressa nella forma
(AC)

∀ε > 0∃δ > 0 t.c.
∑
i

(bi − ai ) < δ⇒
∑
i

|f (bi )− f (ai )| < ε

e la proprietà di essere una funzione integrale, ovvero
(Int)

f (x) = c +

∫ x

a
g(y) dy per opportuni g ∈ L1(a, b) e c ∈ R.

Lebesgue aveva già dimostrato la derivabilità quasi ovunque delle
funzioni integrali, il che rende la g , così come la costante c ,
univocamente determinata, mentre l’implicazione da (Int) a (AC)
segue facilmente dall’assoluta continuità dell’integrale.
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Funzioni assolutamente continue e funzioni integrali, 1905

Tuttavia, l’implicazione da (AC) a (Int) è ardua, se si pensa
che non erano disponibili gli strumenti di teoria della misura
(teorema di Radon-Nikodym) che oggi vengono comunemente usati
per dimostrarla.

Viene ottenuta attraverso la riduzione al caso
monotono e un constancy theorem basato sui numeri derivati.

D+f (t) := lim sup
s↓t

f (s)− f (t)

s − t
, D−f (t) := lim sup

s↑t

f (s)− f (t)

s − t
,

D+f (t) := lim inf
s↓t

f (s)− f (t)

s − t
, D−f (t) := lim inf

s↑t

f (s)− f (t)

s − t
.
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Funzioni assolutamente continue e funzioni integrali, 1905

È in questa nota che compare la prima costruzione di una funzione
continua, monotona, quasi ovunque localmente costante (quindi
con derivata nulla), ma non costante (quindi a variazione limitata,
ma non assolutamente continua).

Oggi la più popolare è nota come funzione di Cantor-Vitali (o devil’s
staircase).
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Integrazione per serie, 1907

Nella nota (Rend. Circolo Matematico di Palermo) dedicata al
problema del passaggio al limite nell’integrazione per serie, formula
un principio di equivalenza tra equi-assoluta continuità

∀ε > 0 ∃δ > 0 t.c. L 1(A) < δ ⇒ sup
h

∫
A
|fh| dx < ε

e convergenza puntuale di funzioni di insieme E 7→
∫
E fh dx nella

classe degli insiemi E di Borel.

Dopo le generalizzazioni successive degli anni 20-30, nell’ambito
della teoria generale della misura, è noto oggi come teorema di
Vitali-Hahn-Saks.
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Teoremi di ricoprimento, 1908

Riporto l’enunciato base della nota (Atti Accademia delle Scienze di
Torino) in forma testuale:
se Σ è un gruppo di segmenti il cui nucleo abbia una misura finita
m1, esiste un gruppo finito o numerabile di segmenti di Σ a due a
due disgiunti, le cui lunghezze hanno una somma non minore di m1.

Vitali è ben consapevole che il risultato si estende a più variabili e
a diverse geometrie (ad esempio cubi anziché palle). Usa questo
risultato per dimostrare la derivabilità L 1-quasi ovunque delle
funzioni a variazione limitata. In seguito Banach lo estenderà
al caso di ricoprimenti con famiglie “controllate” di insiemi, non
necessariamente palle rispetto a una distanza.
Curiosamente, manca nell’enunciato l’informazione più forte (che
però emerge dalla costruzione) che l’unione di tali segmenti contiene
il nucleo, informazione che risulta fondamentale in molte delle future
applicazioni dei “Vitali covering theorems”.
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Teoremi di ricoprimento, 1908
La dimostrazione passa attaverso uno schema iterativo basato su un
enunciato intermedio, che qui riporto in forma moderna:

Teorema
Se B è un numero finito di palle aperte di (Rd , ‖ · ‖), esiste una
sottofamiglia disgiunta B′ ⊆ B tale che

L d
( ⋃
B∈B′

B
)
≥ 3−dL d

( ⋃
B∈B

B
)
.

Anche qui ho omesso l’informazione, pure essenziale in sviluppi
futuri, che l’unione delle palle B3ρ(x) al variare di Bρ(x) in B′
contiene l’unione delle palle di B. Tuttavia è in questa forma che
molti studi sono stati dedicati a trovare la costante ottimale ξd , ad
esempio nel caso dei cubi: per d = 1 si sa che ξ1 = 1/2 (Radó,
1928), per d = 2 si sa che ξ2 < 1/4 (Ajtai, 1973), in ogni caso

2−d ≥ ξd >
1

3d − 7−d
per ogni d ≥ 2, Rado, 1949.
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esempio nel caso dei cubi: per d = 1 si sa che ξ1 = 1/2 (Radó,
1928), per d = 2 si sa che ξ2 < 1/4 (Ajtai, 1973), in ogni caso

2−d ≥ ξd >
1

3d − 7−d
per ogni d ≥ 2, Rado, 1949.
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Rettificazione delle curve, 1922

In questa breve nota (Bollettino UMI) si tratta la questione del
calcolo, mediante integrazione, della lunghezza `(γ) di una curva
rettificabile γ : [a, b] → R2, ove `(γ) è definita con il sup della
lunghezza delle poligonali inscritte:

`(γ) = sup

{
N−1∑
i=1

|γ(ti+1)− γ(ti )| : a ≤ t1 ≤ · · · ≤ tN ≤ b

}
.

La si ottiene mediante riparametrizzazione, ottenendo la formula
integrale

`(γ) =

∫
|η̇(s)| ds

dove η(s) è una qualsiasi parametrizzazione di γ(t) con regolarità
assolutamente continua (in particulare quella per lunghezza d’arco,
che è Lipschitz).
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Decomposizione additiva delle funzioni a variazione finita,
1922-1923

Vitali si dimostra molto interessato ad analizzare più in profondità il
gap tra variazione finita e assoluta continuità, gap che ha mostrato
esistere persino per funzioni continue.

In due note del 1922 e 1923
(Rend. Circ. Mat. Palermo) ottiene la famosa decomposizione
additiva di f in tre parti

f = f a + f j + f c

con f a(t) assolutamente continua, f j(t) funzione di soli salti
(esprimibile quindi nella forma f j(t) =

∑
z∈J,z<t az , con J

finito o numerabile) e f c “Cantoriana”, quindi continua, ma non
assolutamente continua.
In questa nota emerge decisamente tutto il suo virtuosismo nelle
decomposizioni in intervalli, nell’obiettivo di caratterizzare (in
assenza degli strumenti moderni di teoria della misura) le zone di
“crescita infinita” di f , non solo corrispondenti alle discontinuità a
salto, e le loro proprietà.
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Decomposizione additiva delle funzioni a variazione finita,
1922-1923

Introduce quindi, per f : (a, b) → R a variazione finita, il concetto
di scarto

sc(f ; (c , d)) := sup
{
z : ∀ε > 0 ∃P ⊆ (c , d) tale che

L 1(P) < ε e osc(f ,P) > z
}

(con P pluriintervallo) e mostra, tra le altre cose, che lo scarto è
una funzione additiva dell’intervallo (c , d) ⊆ (a, b).

In termini moderni riconosciamo in questi risultati la misura parte
singolare della derivata Df di f nel senso delle distribuzioni,
che oggi comunemente si ottiene usando la decomposizione di
Radon-Nikodym.
Rimuovendo poi i contributi dovuti alle discontinuità si ottiene la
parte “Cantoriana”.
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La formula di coarea, 1925
In “Sulle funzioni continue” (Fundamenta Mathematicae, 1925)
Vitali mostra che, per una funzione continua f : (a, b)→ (c, d) vale

Var(a,b)(f )=
∞∑
r=1

rL 1(Gr ) con Gr=
{
t ∈ (c , d) : card(f −1(t)) = r

}
.

È molto interessante (e in qualche modo ispirato dalla stessa teoria
dell’integrazione di Lebesgue) questo spostamento di interesse dal
dominio al codominio. Se, usando anche il principio di Cavalieri,
riscriviamo la formula di Vitali nel seguente modo

Var(a,b)(f ) =

∫ d

c
card(∂{f > t}) dt

otteniamo la versione unidimensionale della famosa formula
Fleming-Rishel per funzioni BV in domini Ω ⊆ Rd

|Df |(Ω) =

∫ +∞

−∞
Per
(
{f > t},Ω

)
dt

che estende dal caso Lipschitz al caso BV quella di Federer.
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Alcuni temi moderni di Analisi Reale e Teoria della Misura

Vediamo ora alcuni sviluppi più recenti di questi temi, ancora
moderni e ancora ben radicati nella teoria classica fondata da Vitali.
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Funzioni assolutamente continue a valori in spazi metrici

Sia (E , d) metrico e γ : [a, b] → E . La definizione ε − δ di Vitali
continua ad aver senso, mutatis mutandis:

∀ε > 0∃δ > 0 tale che
∑
i

(bi − ai ) < δ ⇒
∑
i

d(γ(bi ), γ(ai )) < ε.

Risulta inoltre equivalente a (una implicazione segue subito come
sempre dall’assoluta continuità della funzione integrale)

d(γ(x), γ(y)) ≤
∫ y

x
g(s) ds per una certa funzione g ∈ L1(I ).

per ogni x , y ∈ [a, b].
Ma cosa possiamo dire sul caso di uguaglianza?

Esiste una g “canonica”?
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La derivata metrica

Teorema (A., 1990)

Per ogni γ ∈ AC (I ;E ), per L 1-quasi ogni t ∈ I , esiste la derivata
metrica

lim
h→0

d(γ(t + h), γ(t))

|h|
:= |γ̇|(t)

ed è la minima (a meno di insiemi nulli) funzione g ammissibile
nella disuguaglianza.

Traccia. L’enunciato è invariante per isometrie.

Ci si riduce al caso
separabile e, fissati x̄ ∈ E e una successione densa (xn) ⊂ E , si usa
il famoso embedding isometrico J : E → `∞ di Kuratowski

J(x) :=
(
d(x , x0)−d(x̄ , x0), d(x , x1)−d(x̄ , x1), d(x , x2)−d(x̄ , x2), . . .

)
per ridursi ulteriormente al caso in cui J ◦ γ(I ) ⊆ `∞. Si ragiona poi
sulle componenti di J ◦ γ, che sono funzioni AC “classiche”.

La derivata metrica è uno degli ingredienti importanti, oggi, del
calcolo differenziale in spazi metrici.
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L’importanza dei numeri derivati

La teoria dei problemi di evoluzione del tipo flusso gradiente
x ′(t) = −∇F (x(t)), t ≥ 0, è stata molto studiata negli ultimi
decenni, con diverse formulazioni che consentono di trattare spazi
ambiente e funzionali F anche non lisci (Brezis, Ekeland, De
Giorgi,....).

Nell’ambito di questa teoria, per funzioni convesse e semicontinue
inferiormente F : E → R, con (E , d) metrico, una nozione molto
feconda di flusso gradiente (A-Gigli-Savaré) è:

(EVI)
d

dt

1
2
d2(x(t), y) ≤ F (y)− F (x(t)) ∀y ∈ E .

Come mostrare l‘unicità delle soluzioni per il problema di Cauchy?

Lo schema formale (ispirato da Kruzkhov, nella teoria delle leggi di
conservazione) è il seguente: se x1(t), x2(t) sono soluzioni con lo
stesso dato iniziale, si applica (EVI) a x1(t) con y = x2(t) e (EVI)
a x2(t) con y = x1(t), sommando, per ottenere
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L’importanza dei numeri derivati

d

ds

1
2
d2(x1(s), x2(t))

∣∣∣∣
s=t

+
d

ds

1
2
d2(x2(s), x1(t))

∣∣∣∣
s=t

≤ [F (x2(t))− F (x1(t))] + [F (x1(t))− F (x2(t))] = 0.

Potendo applicare una qualche forma della formula Leibniz di
derivazione del prodotto, dedurremmo che t 7→ d2(x1(t), x2(t)) è
non crescente, quindi identicamente nulla.
Tuttavia, non ovunque le derivate esistono in (EVI) ed è solo
trasformando la questione con una scelta opportuna tra i numeri
derivati, che sono puntualmente definiti, che si risolve il problema.

Alcuni temi di Analisi Reale e Teoria della Misura, un secolo dopo Giuseppe Vitali 22/31



L’importanza dei numeri derivati

d

ds

1
2
d2(x1(s), x2(t))

∣∣∣∣
s=t

+
d

ds

1
2
d2(x2(s), x1(t))

∣∣∣∣
s=t

≤ [F (x2(t))− F (x1(t))] + [F (x1(t))− F (x2(t))] = 0.

Potendo applicare una qualche forma della formula Leibniz di
derivazione del prodotto, dedurremmo che t 7→ d2(x1(t), x2(t)) è
non crescente, quindi identicamente nulla.

Tuttavia, non ovunque le derivate esistono in (EVI) ed è solo
trasformando la questione con una scelta opportuna tra i numeri
derivati, che sono puntualmente definiti, che si risolve il problema.

Alcuni temi di Analisi Reale e Teoria della Misura, un secolo dopo Giuseppe Vitali 22/31



L’importanza dei numeri derivati

d

ds

1
2
d2(x1(s), x2(t))

∣∣∣∣
s=t

+
d

ds

1
2
d2(x2(s), x1(t))

∣∣∣∣
s=t

≤ [F (x2(t))− F (x1(t))] + [F (x1(t))− F (x2(t))] = 0.

Potendo applicare una qualche forma della formula Leibniz di
derivazione del prodotto, dedurremmo che t 7→ d2(x1(t), x2(t)) è
non crescente, quindi identicamente nulla.
Tuttavia, non ovunque le derivate esistono in (EVI) ed è solo
trasformando la questione con una scelta opportuna tra i numeri
derivati, che sono puntualmente definiti, che si risolve il problema.

Alcuni temi di Analisi Reale e Teoria della Misura, un secolo dopo Giuseppe Vitali 22/31



Funzioni assolutamente continue in più variabili e spazi di
Sobolev

Vi sono stati diversi tentativi di estendere la nozione di assoluta
continuità, o di ACp(R) (funzioni AC la cui derivata, eventualmente
metrica, è in Lp) a funzioni di d > 1 variabili.

Tra i vari,
un approccio molto interessante è stato investigato da Jan
Malý (un’altra definizione, con un controllo di tipo integrale
dell’oscillazione, era stata proposta da Rado-Reichilderferder):

∀ε > 0∃δ > 0 t.c.
∑
i

L d(Bi ) < δ ⇒
∑
i

(
oscBi

(f )
)d
< ε

per famiglie {Bi} di palle disgiunte.
Una semplice variante di questa definizione produce anche il
concetto di funzione con d-variazione limitata. Le funzioni
d-assolutamente continue ACd(Rd) nel senso di Malý costituiscono
uno spazio “limite” vicino a H1,d(Rd):

H1,p(Rd) ⊆ ACd(Rd) ⊆ H1,d(Rd) ∀p > d .
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Gli spazi di Sobolev
Tuttavia, penso che la maggior parte degli esperti ora concordi che
la trasposizione più fedele di ACp(R) a più dimensioni è data dagli
spazi di Sobolev H1,p(Rd), dove (come nel caso monodimensionale)
l’esponente di sommabilità p è disaccoppiato dalla dimensione d .

Possiamo definire tali spazi mediante:
(Approssimazione) f ∈ H1,p(Rd) se f ∈ Lp(Rd) e esistono
funzioni lisce fh convergenti a f in Lp(Rp) tali che

lim sup
h→∞

∫
Rd

|∇fh|p dx <∞.

(Integrazione per parti) f ∈ W 1,p(Rd) se f ∈ Lp(Rd) ed esiste
∇f ∈ Lp(Rd ;Rd) tale che∫

Rd

f∇φ dx = −
∫
Rd

φ∇f dx ∀φ ∈ C∞c (Rd).

Meyers-Serrin (1960), “H = W ” anche in domini generali Ω ⊆ Rd ,
mediante regolarizzazione per convoluzione e partizioni dell’unità.
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L’approccio di Beppo Levi, 1906

B. Levi, Sul principio di Dirichlet, Rend. Circ. Mat. Palermo, 1906.

f appartiene a BL1,p(Rd) se
∫
Rd |f |p dx < ∞ e, per ogni

i ∈ {1, . . . , d}, vale:
(i) per L d−1-q.o. x ′i ∈ Rd−1 la funzione xi 7→ f (xi , x

′
i ) è localmente

assolutamente continua in R;
(ii)
∫
Rd−1

∫
R |

d
dxi

f (xi , x
′
i )|p dxidx ′i <∞.

Tuttavia, la definizione non venne troppo apprezzata per alcune
difficoltà tecniche, in quegli anni difficilmente superabili:
• invarianza rispetto a cambiamenti di coordinate;
• la necessità di postulare un rappresentante “preciso” nella classe
di equivalenza di Lebesgue.

Teorema
BL1,p(Rd) ⊆W 1,p(Rd). Viceversa, se f ∈ H1,p(Rd) allora esiste
f̃ ∈ BL1,p(Rd) L d -q.o. coincidente con f .

A posteriori, i tre spazi coincidono.
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Spazi di Sobolev in spazi metrici di misura

Nella moderna teoria degli spazi di Sobolev (e BV ) in spazi metrici
di misura (X , d , µ), le funzioni assolutamente continue (e BV ) di
variabile reale e il punto di vista di Levi hanno recuperato un ruolo
centrale.

È possibile mostrare che tutte e tre le definizioni possono essere
riprodotte in questo ambito generale, e producono lo stesso spazio,
persino con lo stesso modulo del gradiente!1

Per semplicità illustro solo il punto di vista di Levi, come rivisitato già
in ambito Euclideo da Bent Fuglede, e quello dell’approssimazione
con funzioni regolari, dovuto a Jeff Cheeger, omettendo quello
delle distribuzioni e delle integrazioni per parti che richiedono un
formalismo più astratto (Weaver, Gigli, Di Marino).

1A-Gigli-Savaré, Density of Lipschitz functions and equivalence of weak
gradients in metric measure spaces, RMI, 2013
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Una nozione coordinate-free di “quasi ogni curva”
Consideriamo, nello spazio metrico (X , d), la classe Γ(X ) delle
curve continue γ, non costanti e di lunghezza finita (modulo una
riparametrizzazione, possono essere pensate Lipschitz).

Diremo che una funzione di Borel non negativa ρ : X → [0,∞] è
ammissibile per Γ ⊆ Γ(X ) se∫

γ
ρ ≥ 1 ∀γ ∈ Γ.

L’integrale curvilineo può essere definito, ad esempio, parametriz-
zando in modo AC e usando la derivata metrica:

∫ 1
0 ρ(γ(t))|γ̇|(t) dt.

Per p > 1, definiamo allora (Ahlfors, Beurling, Fuglede)

Modp(Γ) := inf
{
‖ρ‖Lp(µ) : ρ è ammissibile per Γ

}
e usiamo questa funzione d’insieme (che poi risulta essere una
capacità nel senso di Choquet) per dire che una certa proprietà vale
per Modp-quasi ogni curva.
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Consideriamo, nello spazio metrico (X , d), la classe Γ(X ) delle
curve continue γ, non costanti e di lunghezza finita (modulo una
riparametrizzazione, possono essere pensate Lipschitz).
Diremo che una funzione di Borel non negativa ρ : X → [0,∞] è
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γ
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Lo spazio BL1,p(X , d , µ)

Diremo quindi che una funzione di Borel f : X → R è nello spazio
BL1,p(X , d , µ) se esiste una funzione di Borel g : X → [0,∞) con∫
X gp dµ <∞ tale che

|f (γ(1))− f (γ(0))| ≤
∫
γ
g per Modp-quasi ogni γ ∈ Γ(X ).

Questa definizione è la più essenziale, e poi ha come conseguenza
che f ◦ γ è assolutamente continua per Modp-quasi ogni γ.
Fuglede (Acta Math., 1957) mostra in Rd che per p > 1 questa
definizione produce gli spazi H1,p(Rd) e W 1,p(Rd), inoltre la
minima possibile g è proprio |∇f |.
Si noti la buona separazione dei ruoli tra la distanza d e la misura
µ: la distanza entra nella nozione di p-ammissibilità, la misura nel
processo di minimizzazione che definisce Modp(Γ).
Questo non avviene con la definizione di spazio di Sobolev
H1,p(X , d , µ), pure fondamentale, data per approssimazione.
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Lo spazio H1,p(X , d , µ)

Data f : X → R, definiamo pendenza di f in x la funzione

|∇f |(x) := lim sup
y→x

|f (y)− f (x)|
d(y , x)

(posta a 0 nei punti x isolati).

Diremo allora che f ∈ Lp(X , µ) appartiene a H1,p(X , d , µ) se
esistono funzioni fh Lipschitziane sui limitati tali che fh → f in
Lp(X , µ) e

lim sup
h→∞

∫
X
|∇fh|p dµ <∞.

Per ottenere il “modulo del gradiente” Cheeger (GAFA, 1999)
definisce pendenza rilassata ogni punto limite di |∇fh| nella
topologia debole di Lp(X , µ).
Si definisce poi |Df |∗ l’elemento di minima norma Lp dell’insieme
delle pendenze rilassate, che è un convesso chiuso.
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Lo spazio H1,p(X , d , µ)

Con queste semplici definizioni, un calcolo differenziale di base può
essere sviluppato:

(chain rule) |∇φ(f )|∗ ≤ |φ′(f )||∇f |∗, con uguaglianza se φ′ ≥ 0;
(minimalità puntuale) |∇f |∗ ≤ h µ-q.o. in X per ogni pendenza
rilassata h di f .
(località forte) |∇f |∗ = |∇g |∗ µ-q.o. in {f = g}.

Andando oltre, si definisce poi l’energia “di Dirichlet”

Ch(f ) :=

∫
X
|∇f |p∗ dµ

e con essa una nozione di Laplaciano ∆p, che può essere non lineare
persino nel caso p = 2.
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Lo spazio H1,p(X , d , µ)

Teorema
H1,p(X , d , µ) = BL1,p(X , d , µ) per ogni p > 1 ed ogni misura µ
finita sui limitati. Inoltre, per ogni f ∈ BL1,p(X , d , µ), |Df |∗ è la
minima g ammissibile.

La dimostrazione dell’implicazione “difficile” BL ⊆ H richiede
vari strumenti (regolarizzazione mediante ∆p, trasporto ottimo,
principio di sovrapposizione) ma proprio per legare il punto di vista
“Euleriano” degli spazi H a quello “Lagrangiano” degli spazi BL
la teoria delle curve assolutamente continue, di cui Vitali è stato
pioniere, vi gioca un ruolo fondamentale.
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Grazie per l’attenzione!

Se interessati, chiedetemi le slide
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