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Ringraziamenti

It is very nice to be in Milan again. Thanks to the Department for
inviting me to give these talks.

Much of what I will tell you is joint work with Francesca Astengo
(Genova) and Bianca Di Blasio (Milano Bicocca).

Today I want to make a link between the representation theory of
semisimple Lie groups and a classical question in functional
analysis. On Thursday I will discuss some other results about
not-necessarily unitary representations.
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Introduction

▶ Representations of G := SL(2,R);
▶ the invariant subspace conjecture;

▶ the connection between these.

First, G is a Lie group, that is, a group and a manifold, and the
group operations are smooth. We write K for the maximal
compact subgroup SO(2) of G . Tools such as linear algebra and
differential geometry are available.

Next, G is a locally compact group. It carries a natural translation
invariant measure, and the Lebesgue space L1(G ) of integrable
functions is an algebra for convolution:

f ∗ g(y) =
∫
G
f (x)g(x−1y) dx .
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Unitary representations

From early in the 20th century, mathematicians and physicists
have studied topological groups and Lie groups and their
representations on Hilbert spaces. Hilbert, Weyl, von Neumann,
Bargmann, Harish-Chandra, Langlands, . . .

We define a (Hilbert) representation of G to be a strongly
continuous homomorphism ρ from G to the group of bounded
linear maps with bounded inverses on a Hilbert space Hρ. Thus

ρ(x−1) = ρ(x)−1 ρ(xy) = ρ(x)ρ(y)

and xn → x =⇒ ρ(xn)ξ → ρ(x)ξ.

If all ρ(x) are unitary operators, then ρ is said to be unitary.
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Lie algebras and representations

The Lie algebra g of G is the set of 2× 2 real matrices X such that
exp(tX ) ∈ G for all t ∈ R; that is, trace(X ) = 0. If X ∈ g, then

X =
d

dt
exp(tX )|t=0.

If X , Y are in g, then their product need not be in g, but their
commutator [X ,Y ] is. Lie algebras are algebras with products that
abstract the properties of commutators.

To each representation ρ of G we may associate the subspace H ∞
ρ

of C∞ vectors: ξ is C∞ if x 7→ ρ(x)ξ is C∞. We define

ρ(X )ξ =
d

dt
exp(tX )ξ|t=0 ∀ξ ∈ H ∞

ρ ;

then ρ becomes a representation of g in L(H ∞
ρ ); that is, ρ is linear

and ρ([X ,Y ]) = [ρ(X ), ρ(Y )].
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Admissible representations

By Fourier analysis, we may write Hm for the closed subspace of
H of all ξ such that

ρ(kθ)ξ = e imθξ ∀θ ∈ R.

Then H = ⊕̂m∈ZHm, and the projection Pm of H onto Hm is
given by

Pmξ =
1

π

∫ π

−π
e−imθρ(kθ)ξ dθ.

We say that ρ is admissible if

1. each Hm is finite dimensional, which means that HM ⊆ H ∞;

2. ⊕m∈ZHm is finitely generated for (the associative algebra of
operators generated by) ρ(g).

When ρ is admissible, for X ∈ g, ρ(X )Hm ⊆ Hm−1 ⊕ Hm ⊕ Hm+1.
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Are irreducible representations admissible?

Harish-Chandra showed that irreducible unitary representations are
admissible. But not all representations are unitary.

Soergel showed that there are irreducible representations on
Banach spaces that are not admissible, using the solution of the
invariant subspace problem on Banach spaces. His construction
generalises to other groups, such as SO(n, 1).

We (ACD) have recently shown that all irreducible representations
of SL(2,R) on Hilbert spaces are not admissible, using the
proposed solution of the invariant subspace problem on Hilbert
spaces. Our construction will require more functional analysis to
generalise.
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The invariant subspace problem

Let T be a bounded linear operator on a complex Banach space X
of dimension at least 2. The invariant subspace problem is whether
X has a nontrivial closed subspace X0 such that TX0 ⊆ X0. The
question is related to the existence of eigenvectors: if T has an
eigenvector ξ, then Cξ is an invariant subspace.

Per Enflo produced the first example of an operator on a Banach
space without an invariant subspace; shortly after Charles Read
gave shorter and simpler examples. The Banach spaces involved
were all nonreflexive.

Enflo posted a preprint claiming that every operator on a Hilbert
space has an invariant subspace; shortly after Charles Neville
posted an alternative proof. The status of these papers is unclear.

We use these proposed solutions to treat representations of G .
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The topological algebra D(G )m

Let ρ be an irreducible Hilbert representation of G . Irreducibility
means that, if ξ ̸= 0, then span{ρ(x)ξ : x ∈ G} is dense in H , or
equivalently, {ρ(f )ξ : f ∈ D(G )} is dense in H . Here

ρ(f )ξ =

∫
G
f (x)ρ(x)ξ dx .

This is equivalent to saying that the operators Pmρ(f )Pn are
(weakly) dense in the space of linear operators from Hn to Hm.

In particular, when n = m, we see that {ρ(f ) : f ∈ D(G )m} is
dense in the space of linear operators on Hm, where D(G )m is the
set of all smooth compactly supported functions on G with the
transformation property

f (kθxkφ) = e−im(θ+φ)f (x) ∀x ∈ G ∀kθ, kφ ∈ K . (∗)

The space D(G )m is a commutative topological algebra for
convolution (this is miraculous.)
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Why are Hilbert representations admissible?

We shall show that D(G )m, or, more precisely, a suitable
completion D̄(G )m thereof, has a single topological generator fm.

We have to show that dim(Hm) ≤ 1 for all m. Suppose for some
m that dim(Hm) ≥ 2. Then ρ(fM) has a nontrivial invariant
subspace H ◦

m, by the proposed solution to the invariant subspace
problem. Since fm generates D̄(G )m, this subspace is invariant for
{ρ(f ) : f ∈ D̄(G )m}. It then follows that H ◦

m ⊕
∑

m′ ̸=m Hm′ is a
nontrivial invariant subspace for ρ, and this is a contradiction.

To complete the proof, we need to define “a suitable completion”
and show that this space has a single generator. This involves
functional analysis, harmonic analysis and complex analysis.
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Details

We claim that there exist constants C and α such that

∥ρ(x)∥ ≤ C ∥x∥α ∀x ∈ G .

To see this, observe that x 7→ ρ(x)ξ is continuous on the compact
set ∥∥−1 ([1, e]), and hence bounded. The Banach–Steinhaus
theorem then implies that there exists a constant C such that

∥ρ(x)∥ ≤ C ∀x ∈ ∥∥−1 ([1, e]).

If ∥x∥ ≤ ek , then we may write x as a product of at most k
factors, each in ∥∥−1 ([1, e]), and then ∥ρ(x)∥ ≤ C k .

Write ω(x) := ∥x∥β, and L1(G , ω) for the space of all f such that

∥f ∥ω :=

∫
G
|f (x)|ω(x) dx < ∞.
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Details. 2

When β is big enough, the subspace L1(G , ω)m of L1(G , ω)
functions with the invariance property (∗) is our completion
D̄(G )m. It is a commutative Banach algebra, and can be treated
using harmonic analysis.

The Fourier transform (or the Gel′fand transform) maps L1(G , ω)m
to a space of bounded even holomorphic functions in a strip

{z ∈ C : |Re(z)| ≤ (β + 1)/2}.

The dense subspace D(G )m of L1(G , ω)m maps to a space of such
functions that are entire and vanish rapidly at infinity in all vertical
strips.

Let Γ be the vertical straight line contour from (β + 3)/2− i∞ to
(β + 3)/2 + i∞ in C.
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Details. 3

By Cauchy’s integral formula, if f ∈ D(G )m, then

f̂ (z) =
1

2πi

(∫
Γ

f̂ (w)

w − z
dw +

∫
−Γ

f̂ (w)

w − z
dw

)

=
1

2πi

(∫
Γ

f̂ (w)

w − z
+

f̂ (w)

w + z
dw

)

=
1

πi

(∫
Γ

w f̂ (w)

w2 − z2
dw

)
.

Formally,

f =
1

πi

(∫
Γ
w f̂ (w) rw dw

)
,

where r̂w (z) = (w2 − z2)−1.
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Details. 4

We shall show that there are L1(G , ω)m functions rw such that r̂w
is the function z 7→ (w2 − z2)−1 and ∥rw∥ω ≤ C |w |4, and rw lies
in the closed subalgebra of L1(G , ω)m generated by r(β+3)/2, for all

w for which Re(w) ≥ (β + 3)/2. Since f̂ is bounded and decays
rapidly at infinity on Γ it follows from our formal statement that f
is a limit of sums of functions rw as w varies on Γ, so f is also in
the closed subalgebra of L1(G , ω)m generated by r(β+3)/2.
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Details. 5

Let us take the existence and norm estimate for granted, and that
if wn → w , then rwn → rw in L1(G , ω)m. Observe that if
|w̃2 − w2| < ∥rw∥w , then

r̂w̃ (z) =
1

w̃2 − z2
=

1

(w2 − z2)

1(
1− w2−w̃2

w2−z2

) =
∑
k∈N

(w2 − w̃2)k

(w2 − z2)k+1
,

whence rw̃ =
∑

k∈N(w
2 − w̃2)k r

∗(k+1)
w . This sum converges in

L1(G , ω)m, and so rw̃ lies in the algebra generated by rw .

We deduce that the set of w̃ such that Re(w̃) ≥ (β + 3)/2 and rw̃
is in the closed subalgebra of L1(G , ω)m generated by r(β+3)/2 is
open. The set is also closed, by our assumption that the
subalgebra is closed, and hence all rw̃ have the desired property.
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Details. 6

It remains to prove the existence and norm estimate. Let me just
state two of the ingredients.

First, a matrix coefficient of a representation ρ is a function
x 7→ ⟨ρ(x)ξ, η⟩, where ξ, η ∈ H . The matrix coefficients of the
irreducible representations of G may be written in terms of special
functions, and the Fourier transform of a function is given by
integration against these.

Next, there is a Plancherel theorem and an inversion theorem for
G , that relate certain functions and their Fourier transforms. At
least formally, we can write f ∈ L1(G ,w)m in terms of its Fourier
transform f̂ , again with integrals involving special functions.

The behaviour is of the relevant special functions is understood
well enough to be able to say that certain f̂ really do correspond to
f in L1(G , ω)m, and to estimate their norms.
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First, a matrix coefficient of a representation ρ is a function
x 7→ ⟨ρ(x)ξ, η⟩, where ξ, η ∈ H . The matrix coefficients of the
irreducible representations of G may be written in terms of special
functions, and the Fourier transform of a function is given by
integration against these.

Next, there is a Plancherel theorem and an inversion theorem for
G , that relate certain functions and their Fourier transforms. At
least formally, we can write f ∈ L1(G ,w)m in terms of its Fourier
transform f̂ , again with integrals involving special functions.

The behaviour is of the relevant special functions is understood
well enough to be able to say that certain f̂ really do correspond to
f in L1(G , ω)m, and to estimate their norms.
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