» Home Page
Publications

Papers

  1. (with A. Portaluri) Dynamics of the dihedral four-body problem (to appear on DCDS-S) 2013.
  2. A Reidemeister trace for fibred maps, Journal of Fixed Point Theory and its Applications, vol 10 (2011), p. 113-127. {LINK}
  3. (with V. Barutello and S. Terracini) Symmetry groups of the planar 3-body problem and action-minimizing trajectories Arch. Rational Mech. Anal. 190 (2008), pp. 189-226
  4. (with V.Barutello and S. Terracini) On the singularities of generalized solutions to $n$-body type problems: International Mathematics Research Notices (2008) Vol. 2008 : article ID rnn069, 78 pages, doi:10.1093/imrn/rnn069 published on July 3, 2008
  5. (with A. Portaluri) On the dihedral n-body problem: Nonlinearity 21 (2008) 1307-1321. {LINK}
  6. Transitive decomposition of $n$-body symmetry groups: SPT 2007 Symmetry and perturbation theory, World Sci. Publ. (2008) 73--80.
  7. Planar central configurations as fixed points. J. Fixed Point Theory Appl. 2 (2007), no. 2, 277--291. {LINK}
  8. Transitive decomposition of symmetry groups for the $n$-body problem: Adv. in Math. 213 (2007) 763-784.
  9. Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space. arXiv.org e-Print: math.DS/0407461. Arch. Rational Mech. Anal. 179 (2006), 389--412.
  10. A Note on Equivariant Fixed Point Theory, (chapter for the Handbook on topological fixed point theory; R.F. Brown, M. Furi, L. Gorniewicz and B.J. Jiang editors). Kluwer Academic Publishers, NL (2005).
  11. (with Terracini, S.) On the existence of collisionless equivariant minimizers for the classical n-body problem. Inventiones Mathematicae, Vol. 155 N. 2 (2004), 305--362.
  12. (with Baues, H.-J.), Stratified fibre bundles. Forum Mathematicum Vol 16 n.6 (2004), 865--902.
  13. (with Baues, H.-J.) Homotopy and homology of fibred spaces. Topology and its applications Vol 139 n.1-3 (2004), 63--96.
  14. A Mobius inversion formula for generalized Lefschetz numbers, 2002. Osaka J. of Math., 40 n.2 (2003), 1--27.
  15. (with Baues, H.-J.) $K$-theory of stratified vector bundles. K-theory 28 (2003), 259--284.
  16. On the equivariant Hopf theorem, 2002. Topology 42 n. 2 (2003), 447-465.
  17. Self-equivalences of dihedral spheres. Collectanea Mathematica, 53 n. 3 (2002), 251-264.
  18. Making Equivariant Maps Fixed Point Free, Theory of fixed points and its applications (Sao Paolo, 1999). Topology and its applications 116 (2001) no. 1, 57-71.
  19. Self homotopy equivalences of equivariant spheres. Groups of homotopy self-equivalences and related topics (Gargnano, 1999), 105-131, Contemporary Mathematics, 274, Amer. Math. Soc., Providence, RI, 2001.
  20. Equivariant Deformations of Manifolds and Real Representations, Pacific Journal of Mathematics 196 (2000), no. 2, 353-368.
  21. (with D.L. Gonalves - IME-USP San Paolo, Br), Homeomorphisms of surfaces locally may ¸ not have the Wecken property. Proceedings of the Brazilian Topology Conference (Sao Paolo, 1998), World Scientific, Singapore (2000), 1-9.
  22. A Fixed Point Index for Equivariant Maps, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 313-340.
  23. Generalized Lefschetz numbers of pushout maps defined on non-connected spaces. Nielsen theory and Reidemeister torsion (Warsaw, 1996), 117-135, Banach Center Publ., 49, Polish Acad. Sci., Warsaw, 1999.
  24. Computing Reidemeister classes, Fundamenta Mathematicae, 158, n. 1 (1998) 1-18.
  25. Fixed points in bouquets of circles, Far East J. Math. Sci., Special Volume 1997, Part II, 129-136.
  26. Generalized Lefschetz numbers of pushout maps, Topology and its Applications n. 68 (1996) 67-81.

Quasi-publications

  1. Symmetric periodic orbits for the n-body problem: some preliminary results. MPI-2002-79 Preprint.
  2. Central configurations, symmetries and fixed points, 2002. arXiv.org e-Print: math.DS/0204198.
  3. Equivariant deformation of G-maps and fixed points. PhD dissertation. Advisor: Prof. Dr. Albrecht Dold (University of Heidelberg). Università di Milano, 2000.
  4. Teoria di punto fisso alla Nielsen (Nielsen fixed point theory). Laurea dissertation. Advisor: Prof. Dr. Renzo A. Piccinini (Università di Milano). Università di Milano, 1994.

Other publications

  1. (with Renzo Piccinini) Simplicial structures in topology (CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC) Springer, New York, 2011. xvi+243 pp. ISBN: 978-1-4419-7235-4. MATHSCINET
  2. (with Renzo Piccinini) Strutture simpliciali in topologia (Quaderni UMI n.50, 288 pp, Pitagora Ed. - 2009). {LINK}
  3. Analisi matematica. Dal calcolo all'analsi Vol. 1 (con M. Conti, S. Terracini, G. Verzini) Apogeo (2006). {LINK}
  4. Analisi matematica. Con elementi di geometria e calcolo vettoriale Vol. 2 (con V. Barutello, M. Conti, S. Terracini, G. Verzini) Apogeo (2008). {LINK}
  5. Topologia e scelte sociali, emmeci quadro (Scienza Educazione E Didattica), n. 25 (2005), 23--30. Euresis Ed.
  6. Come fare matematica. (con F. Erba e A. Magni) Ghisetti e Corvi Editori, Milano, 2002. Una serie di 15 piccoli volumi di matematica guidata ciascuno circa di 130 pagine per studenti di scuola superiore o del primo anno di università.
    • 1. Modulo A: Funzioni (ISBN 88-8013-730-1);
    • 2. Modulo B: Disequazioni algebriche (ISBN 88-8013-731-X);
    • 3. Modulo C: Potenze e logaritmi (ISBN 88-8013-732-8);
    • 4. Modulo D: Gli assi cartesiani e le trasformazioni geometriche nel piano cartesiano (ISBN 88-8013-733-6);
    • 5. Modulo E: La retta e la circonferenza nel piano cartesiano (ISBN 88-8013-734-4);
    • 6. Modulo F: La parabola, l'ellisse, l'iperbole nel piano cartesiano (ISBN 88-8013-735-2);
    • 7. Modulo G: Goniometria (ISBN 88-8013-736-0);
    • 8. Modulo H: Equazioni, disequazioni, sistemi goniometrici (ISBN 88-8013-737-9);
    • 9. Modulo K: Trigonometria (ISBN 88-8013-738-7);
    • 10. Modulo L: Successioni numeriche (ISBN 88-8013-739-5);
    • 11. Modulo M: Limiti di una funzione (ISBN 88-8013-740-9);
    • 12. Modulo N: Derivata di una funzione (ISBN 88-8013-741-7);
    • 13. Modulo O: Massimi, minimi e studio di funzioni (ISBN 88-8013-742-5);
    • 14. Modulo P: Integrali (ISBN 88-8013-743-3);
    • 15. Modulo Q: Serie numeriche. Equazioni differenziali (ISBN 88-8013-744-1).