A note on the rotationally symmetric SO(4) Euler rigid body

Gregorio FALQUI†

† Dipartimento di Matematica e Applicazioni,
Università di Milano – Bicocca, via R. Cozzi, 53, 20125 Milano, Italy
E-mail: gregorio.falqui@unimib.it
URL: http://www.matapp.unimib.it/ falqui

Abstract. We consider an SO(4) Euler rigid body with two “inertia momenta” coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.

Key words: Euler top; Separation of variables; bihamiltonian manifolds

2000 Mathematics Subject Classification: 37K10; 70H20; 14H70

1 Introduction

It is fair to say that the problem of the free rigid body in \(\mathbb{R}^4 \) (i.e., the SO(4) Euler or Euler–Manakov rigid body or top) can be still considered as an interesting problem in the theory of Separation of Variables (SoV) for Hamilton–Jacobi equations.

Ingenious methods were devised to solve the very classical problem of the Euler–Manakov top, (see, e.g., [18, 20, 23, 1, 2, 3, 5, 25], but this list – as well as the bibliography of the present paper – is by far incomplete), in particular to characterize the solutions by means of suitable techniques coming from algebraic geometry.

In this paper we will consider, from the point of view of bihamiltonian geometry, a degenerate case of Euler top, that can be called rotationally symmetric. Namely, we consider the case in which two of the four independent parameters that enter the construction (that, after Manakov’s construction, can be termed generalised principal inertia moments) coincide. This is a particular case of the general SO(4) system, but it possesses some interesting and peculiar features that deserve, in the author’s opinion, to be spelled out.

It should be noticed that in [24] the SoV problem was implicitly considered in the study of SoV for elliptic Gaudin models, and basically solved, with a considerable amount of hard computations and ingenuity. Furthermore, in [19], interesting classes of solutions to the Hamilton–Jacobi equations associated with the SO(4) Euler–Manakov systems (as well as other alike systems) were recently obtained. In the present paper we will follow a more direct and geometrical way to approach it, with the aim of giving a simple and explicit setting for the Separation of variables problem of this symmetric SO(4) Euler top.

The framework we will use to study this system is the so-called bihamiltonian setting for Separation of Variables for Gel’fand–Zakharevich [11] systems, that has
been introduced a few years ago (see, e.g., [22, 4, 7], and references quoted therein) and formalised in [9]; we will sketch the content of this method in Section 2.

After that, in Section 3 we will briefly resume those aspects of the $SO(4)$ Euler–Manakov system that are relevant in our analysis, and in the core of the paper (Section 4) we will consider the rotationally symmetric case and solve, applying the recipes described in Section 2 the SoV problem for this Hamiltonian system.

Separation of Variables, both in classical and quantum systems, was a research arena in which Vadim Kuznetsov obtained notable results. In particular, his papers [12, 14, 13, 15] were deeply influential on the study of the SoV problem (and more general integrability) from the point of view of bihamiltonian geometry, carried out by the author of the present paper in collaboration with F. Magri, M. Pedroni, and G. Tondo. We had the opportunity to discuss with him about these and related subjects many a times, and appreciate his scientific as well as human talents. With deep sorrow I dedicate this work to his memory.

2 A bihamiltonian set–up for SoV

In this Section we will briefly review a scheme for solving the SoV problem in the Hamilton Jacobi equations, based on properties of bihamiltonian manifolds. We will discuss those features that are relevant for the case at hand, referring to [9] and to [8] for a comprehensive theoretical presentation, as well as for a wider list of references.

Let (M, P_1, P_2) be a bihamiltonian manifold, that is, a manifold endowed with a pair of compatible Poisson brackets $\{\cdot, \cdot\}_P, i = 1, 2$, or, equivalently, with two compatible Poisson bivectors (or operators) P_1, P_2, related to the brackets by the well-known formulas

$$\{f, g\}_P = \langle df, P_i dg \rangle, \quad \forall f, g \in C^\infty(M), \quad i = 1, 2.$$ \tag{2.1}

We consider a Gel’fand–Zakharevich bihamiltonian system with one bihamiltonian chain. That is, we consider the datum, on the bihamiltonian manifold (M, P_1, P_2), of an “anchored” Lenard-Magri chain of length $n > 0$,

$$P_1 dH_0 = 0, \quad P_1 dH_i = P_2 dH_{i-1}, \quad i = 1, \ldots, n \quad P_2 dH_n = 0,$$ \tag{2.2}

that is, a family of bihamiltonian vector fields originating from a Casimir function of one Poisson operator and ending in a Casimir function of the other Poisson operator. We may suppose that p additional Casimir functions common to the two structures C_1, \ldots, C_p be also present\footnote{In the $SO(4)$ Euler top, indeed, we will have one of such Casimir functions.}, and we require that the system be complete, i.e., that $n = \dim M - 1 - p$ independent vector fields fill in the chain (2.2).

Such a system provides (families of) Liouville integrable systems as follows. One considers a (generic) symplectic leaf S of one of the two Poisson operators, say, P_1.

S is a submanifold of M defined by fixing the values of all Casimir functions H_0, C_1, \ldots, C_p of P_1. Any of the vector fields of the chain (2.2), say $X_1 = P_1 dH_1(= P_2 dH_0)$, restricts to S, is still Hamiltonian with respect to (the restriction of) the chosen Poisson operator P_1 (which becomes an ordinary symplectic operator on S), and, thanks to the basic property of Lenard Magri chains, comes equipped with the right number of involutive integrals, namely the (restriction to S of) the other Hamiltonian functions of the vector fields $X_i, \ i = 2, \ldots, N$ of (2.2).
What is lost, in general, in this procedure is the bihamiltonian structure of the equations: indeed, the second Poisson operator does not restrict to S, since it does not leave the function H_0, which is a Casimir of P_1 invariant, i.e., Hamiltonian vector fields generated by P_2 do not leave the submanifolds S invariant.

However, as it is shown in [9], the symplectic manifold S with a bihamiltonian structure may be provided with another bihamiltonian structure, in which, along with P_1, a “new” second Poisson operator Q can be defined on M, that can be restricted to S and has notable properties.

For this new structure to exist, conditions are to be fulfilled. Namely, one has to find a vector field Z, defined on M, such that:

i) Z is a symmetry of P_1, transversal to the submanifolds $H_0 = \text{cost}$, and leaving the common Casimir functions C_i invariant:

$$\text{Lie}_Z(P_1) = 0, \quad \text{Lie}_Z(H_0) = 1, \quad \text{Lie}_Z(C_i) = 0, i = 1, \ldots, p. \quad (2.3)$$

ii) It deforms of the second Poisson tensor P_1 as follows:

$$\text{Lie}_Z(P_2) = Y \wedge Z, \text{ for some vector field } Y, \quad (2.4)$$

Indeed, under these conditions it hold that the bivector $Q := P_2 - X_1 \wedge Z$ (where X_1 is the first vector field of the Lenard-Magri chain (2.2)) satisfies:

1. Q is a Poisson structure on M, compatible with P_1 which shares with P_1 all the Casimirs, and hence, together with P_1 induces a bihamiltonian structure on the symplectic leaves S.

2. The Hamiltonians H_i do not form anymore Lenard-Magri sequences w.r.t. this new Poisson pair (P_1, Q), but still are in involution also w.r.t. the deformed (or new) structure $Q = P_2 - X_1 \wedge Z$.

These two properties are very important for our purposes; indeed, from the first one it follows [16, 10] that the pair (P_1, Q) defines, on each symplectic leaf S, a special set of coordinates, called Darboux–Nijenhuis coordinates, associated with the eigenvalues of a torsionless “recursion” operator.

From the second one, it follows [9] that the Hamiltonians H_i are separable in these DN coordinates, that is, that the Hamilton–Jacobi equation associated with any of the Hamiltonians H_i is separable in these coordinates. Hence, the first and basic step of the bihamiltonian recipe for SoV of Gel’fand–Zakharevich systems of type (2.2) essentially boils down to find/guess this vector field Z, which will be referred to as the transversal vector field.

For the reader’s convenience, as well as to provide the necessary background to the calculations presented in Section 4, we discuss more in details the construction of DN coordinates. A preliminary remark is in order. As the two structures P_1 and Q share the same symplectic leaves, we will generically use the same letters $P - 1, Q$ also for their natural restrictions to the symplectic leaves to avoid cumbersome notations.

As already noticed, on any (generic) symplectic leaf of P_1 this operator is symplectic and thus invertible; hence, the compositions

$$N := QP^{-1} : TS \to TS, \quad \text{and} \quad N^* := P_1^{-1}Q : T^*S \to T^*S \quad (2.5)$$
are well defined. In the literature, N is called a Nijenhuis or recursion or hereditary operator; in our setting, its adjoint operator, N^* will play a more visible role.

Being the ratio of two antisymmetric operators, N^* has up to $m = \frac{1}{2} \dim \mathcal{S}$ distinct eigenvalues $\lambda_1, \ldots, \lambda_m$. Under the assumption that the number of these distinct eigenvalues be exactly m, it follows, basically as a consequence of the compatibility condition between P_1 and Q, that, for each λ_i there is a pair of canonical (w.r.t. P_1) coordinates f_i, g_i that generates the eigenspaces of N^*, that is, it holds

$$N^* df_i = \lambda_i df_i; \quad N^* dg_i, \quad \{f_i, g_j\}_P = \delta_{ij}. \quad (2.6)$$

These coordinates are called Darboux–Nijenhuis coordinates associated with the pair P_1, Q. Notice that the “eigenvalue” relations written above imply the Poisson bracket relations $\{f_i, g_j\}_Q = \delta_{ij}\lambda_i$ w.r.t. the second Poisson structure. Fortunately enough, in generic cases, there is no need to integrate (all the) two–dimensional distributions $\text{Ker}(N^* - \lambda_i)$ to actually find DN coordinates, thanks to the following results.

It should be noticed that, since N^* depends on the point of \mathcal{S}, its eigenvalues are functions defined on \mathcal{S}. In particular, non–constant eigenvalues of N^* do provide DN coordinates. This means that, if $d\lambda_i \neq 0$, then one can choose the function λ_i as the coordinate function f_i of (2.6).

To find the missing canonical coordinate associated with the eigenvalue λ_i one can try to use a recipe, discussed in [9] that might be called method of deformation of the Hamiltonians, and goes as follows:

Consider the sum p_1 of all the eigenvalues of N^*, and the Hamiltonian vector field $Y = -P_1 dp_1$. Then collect the Hamiltonians filling the Lenard–Magri recursion relations (2.2) in the Gel’fand–Zakharevich polynomial

$$H(\lambda) := \lambda^n H_0 + \lambda^{n-1} H_1 + \cdots + \lambda H_{n-1} + H_n \quad (2.7)$$

and deform it repeatedly along the vector field Y, that is, consider the polynomials

$$H'(\lambda) = \text{Lie}_Y H(\lambda), \quad H''(\lambda) = \text{Lie}_Y H'(\lambda), \quad \cdots. \quad (2.8)$$

If, for some $n \geq 0$ it happens that the polynomial $H^{(n+2)}(\lambda)$ identically vanishes in λ, (while $H^{(n+1)}(\lambda)$ is not identically vanishing), then evaluating the rational function

$$\frac{H^{(n)}(\lambda)}{H^{(n+1)}(\lambda)} \quad \text{at } \lambda = \lambda_i \quad (2.9)$$

provides us with a DN coordinate g_i conjugate with $f_i \equiv \lambda_i$.

Remarks 1) It should be stressed that, with respect to the pair P_1, Q, the Hamiltonians do not fill in a standard Lenard-Magri chain, but rather a generalised one (see [7, 9, 17] for further details) of the form

$$Q dH_i = P_i dH_{i+1} + p_i dH_1, \quad i = 1, \ldots, n, \quad (2.10)$$

where p_i are (up to signs) the elementary symmetric polynomials associated with the eigenvalues λ_i. However, this invariance relation is sufficient to insure separability of the Hamilton–Jacobi equations.

2) Contrary to other methods for integrating Hamilton equations, and notably the method of Lax pairs, the bihamiltonian setting herewith briefly sketched provides poor informations on the Jacobi separation relations, that is, those relations tying
pairs of separation coordinates with the Hamiltonians $H_0, H_1, H_2, \ldots, H_n$ and the common Casimir functions $C = (C_1, \ldots, C_p)$.

However, the functional form of the separation relations can be sometimes ascertained from bihamiltonian geometry. Indeed, if the second Lie derivative of the GZ polynomial (2.7) with respect to the transversal vector field Z vanishes, then these relations will be affine functions of the Hamiltonians and the Casimirs, that is, they will be given by expressions of the form

$$F_1^i(\lambda_i, \xi_i)H_1 + \cdots + F_n^i(\lambda_i, \xi_i)H_n + G(\lambda_i, \xi_i; C) = 0, \quad i = 1, \ldots, m. \quad (2.11)$$

Separation relations of this kind are often referred to as generalized Stäckel separation relations.

3 The Euler Manakov model

In this section we will briefly review the basic features of the $SO(4)$ Euler-Manakov top.

The phase space is the (dual of) the Lie Algebra $\mathfrak{so}(4)$, identified\(^2\) with 4×4 antisymmetric matrices

$$M = \sum_{i<j=1}^{4} m_{ij}(E_{ij} - E_{ji}), \quad (3.1)$$

where E_{ij} is the elementary matrix with 1 at the (i,j)–th place.

This six dimensional manifold is naturally endowed with the Lie Poisson structure, that, in the natural variables $m = \{ m_{1,2}, m_{1,3}, m_{1,4}, m_{2,3}, m_{2,4}, m_{3,4} \}$ is represented by the matrix

$$P_1 = \begin{bmatrix}
0 & -m_{2,3} & -m_{2,4} & m_{1,3} & m_{1,4} & 0 \\
-m_{2,3} & 0 & -m_{3,4} & -m_{1,2} & 0 & m_{1,4} \\
m_{2,4} & m_{3,4} & 0 & 0 & -m_{1,2} & -m_{1,3} \\
-m_{1,3} & m_{1,2} & 0 & 0 & -m_{3,4} & m_{2,4} \\
-m_{1,4} & 0 & m_{1,2} & m_{3,4} & 0 & -m_{2,3} \\
0 & -m_{1,4} & m_{1,3} & -m_{2,4} & m_{2,3} & 0
\end{bmatrix} \quad (3.2)$$

The Hamiltonian is the quadratic function

$$H_\mathcal{E} = \frac{1}{2} \sum_{i<j=1}^{4} a_{ij}m_{ij}^2, \quad (3.3)$$

where the coefficients a_{ij} can be written as

$$a_{ij} = J_i^2 + J_j^2, \quad \text{with } \{i, j, l, k\} \text{ a permutation of } \{1, 2, 3, 4\}. \quad (3.4)$$

\(^2\)We are actually identifying $\mathfrak{so}(4)$ and its dual.
The Hamilton equation of motion (that is, the Euler equations for the $SO(4)$ rigid body), are quadratic equations in the variables m_{ij}, that depend parametrically on the coefficients J^2. For instance,

$$\frac{d}{dt} m_{12} = J^2 (m_{1,3} m_{2,4} + m_{1,4} m_{2,3}) - J^2 (m_{1,3} m_{2,3} + m_{1,4} m_{2,4})$$

and so on and so forth.

Complete Liouville integrability of the model is ensured by the following well known facts.

1. The rank of the $so(4)$ Lie Poisson structure is 4; its Casimir functions are

$$H_0 = \sum_{i<j} m_{ij}^2, \quad C = m_{1,2} m_{3,4} + m_{1,4} m_{2,3} - m_{1,3} m_{2,4}. \tag{3.5}$$

2. The second independent non trivial constant of the motion for H_E is provided by the quadratic function

$$K_E = \sum_{i<j=1}^{4} b_{ij} m_{ij}^2, \quad b_{ij} = J^2_{i} J^2_{j}, \quad \text{with \{i, j, l, k\} a permutation of \{1, 2, 3, 4\}} \tag{3.6}$$

The Hamiltonian vector field X associated with H_E admits a Lax representation with parameter $[18, 3]$; indeed, if one considers the matrix $J := \text{diag}(J_1, J_2, J_3, J_4)$, and forms the matrix

$$L(\lambda) = \lambda J^2 + M, \tag{3.7}$$

the Euler equations are equivalent to the Lax equations

$$\frac{d}{dt} L(\lambda) = [L(\lambda), B(\lambda)], \tag{3.8}$$

where $B(\lambda) = \Omega + \lambda \Omega$, and Ω is the "matrix of angular velocities", i.e., defined by M via $M = J \Omega + \Omega J$.

As it is well known, the integrals of the motion (as well as the Casimirs of the Lie Poisson structure) are collected in the characteristic polynomial of $L(\lambda)$. In particular, if one uses the product $\rho \lambda$ as "eigenvalue parameter", one gets

$$\text{Det}(L(\lambda) - \rho \lambda 1) = \lambda^4 (P_4(\rho)) + \lambda^2 (\rho^2 (H_0) + \rho H_1 + H_2) + C^2 \tag{3.9}$$

where $P_4(\rho) = \prod_{i=1}^{4} (J^2_i - \rho)$, $H_1 = -2 H_\xi$, $H_2 = K_\xi$, and H_0, C are the two Casimirs of the Lie Poisson structure (the second one being the Pfaffian of M).

As it was discovered in [6], and independently in [21], the Euler-Manakov equations of motion admit a bihamiltonian formulation, that can be described as follows. The matrix J^2 defines a deformed commutator on the Lie algebra $so(4)$ as:

$$[M_1, M_1]_\mu := [M_1 J^2 M_2, M_2 J^2 M_1] = M_1 J^2 M_2 - M_2 J^2 M_1; \tag{3.10}$$

The Lie Poisson structure associated with $[\cdot, \cdot]_\mu$ provides a second Hamiltonian structure P_2 on $so(4)$. Compatibility with the standard one is assured by the method of
augmented translations, i.e., by the fact that $[\cdot,\cdot]_\lambda = [\cdot,\cdot]_{2\lambda} - \lambda[\cdot,\cdot]$ is a one parameter family of commutators, that is, the Jacobi identity holds identically in λ. The 6×6 matrix representing the second Poisson structure in the phase space variables $m = \{m_{ij}\}_{i<j=1,\ldots,4}$ can be easily found to be

$$
P_2 =
\begin{bmatrix}
0 & -J_1^2m_{2,3} & -J_2^2m_{1,3} & J_2^2m_{1,4} & 0 \\
J_1^2m_{2,3} & 0 & -J_1^2m_{3,4} & -m_{1,2}J_3^2 & 0 & m_{1,4}J_3^2 \\
J_1^2m_{2,4} & J_1^2m_{3,4} & 0 & 0 & -m_{1,2}J_4^2 & -m_{1,3}J_4^2 \\
-J_2^2m_{1,3} & m_{1,2}J_3^2 & 0 & 0 & -J_2^2m_{3,4} & m_{2,4}J_3^2 \\
-J_2^2m_{1,4} & 0 & m_{1,2}J_4^2 & J_2^2m_{3,4} & 0 & -m_{2,3}J_4^2 \\
0 & -m_{1,4}J_3^2 & m_{1,3}J_4^2 & -m_{2,4}J_3^2 & m_{2,3}J_4^2 & 0
\end{bmatrix}
$$

(3.11)

In particular, the $\mathfrak{so}(4)$ Euler system is a Hamiltonian vector field also w.r.t. the Poisson operator P_2, defined by the deformed commutator (3.10), with “second” Hamiltonian the function $-\frac{1}{2}H_0 = -\frac{1}{2}\sum_{i<j}m_{ij}^2$. Moreover, a direct computation ensures the following:

Proposition 1. The characteristic polynomial (3.10) $P(\lambda, \rho) = \det(L(\lambda) - (\rho \lambda)1)$ of the Lax matrix $L(\lambda)$ is a Casimir of the Poisson pencil $P_\rho = P_2 - \rho P_1$, that is,

$$
P_2(dP(\lambda, \rho)) = \rho P_1(dP(\lambda, \rho)) \text{ identically in } \rho, \lambda.
$$

(3.12)

In other words, the Pfaffian C is a common Casimir of the two structures, while the three functions H_0, H_1, H_2 satisfy the GZ recurrence relations

$$
P_1d(H_0) = 0, \quad P_2d(H_0) = P_1d(H_1), \quad P_2d(H_1) = P_1d(H_2), \quad P_2d(H_2) = 0.
$$

For the sequel of the paper, the following well known considerations will be useful.

The Lie algebra $\mathfrak{so}(4)$ is isomorphic to the direct sum $\mathfrak{so}(3) \oplus \mathfrak{so}(3)$; a linear change of variables that explicitly realizes this isomorphism is the following:

$$
\begin{cases}
x_1 = \frac{1}{\sqrt{2}}(m_{1,2} - m_{3,4}) & y_1 = \frac{1}{\sqrt{2}}(m_{1,3} + m_{2,4}) & z_1 = \frac{1}{\sqrt{2}}(m_{1,4} - m_{2,3}) \\
x_2 = \frac{1}{\sqrt{2}}(m_{1,2} + m_{3,4}) & y_2 = \frac{1}{\sqrt{2}}(m_{1,3} - m_{2,4}) & z_2 = \frac{1}{\sqrt{2}}(m_{1,4} + m_{2,3})
\end{cases}
$$

(3.13)

In particular, the variables $\{x_i, y_i, z_i\}_{i=1,2}$ satisfy, with respect to the standard Lie Poisson structure P_1 the $\mathfrak{so}(3)$ commutation relations:

$$
\{x_i, y_i\} P_1 = \sqrt{2}z_i, \quad \{x_i, z_i\} P_1 = -\sqrt{2}y_i, \quad \{y_i, z_i\} P_1 = \sqrt{2}x_i, \quad i = 1, 2,
$$

while Poisson brackets involving coordinates from different $\mathfrak{so}(3)$ subalgebras vanish, e.g. $\{x_1, z_2\} P_1 = 0$ and so on and so forth.
Under this coordinate change, the Euler Hamiltonian (3.3) acquires the form
\[H_E = 2\mu_4 x_1 x_2 + 2\mu_3 y_1 y_2 + 2\mu_2 z_1 z_2 + \mu_1 \left(y_1^2 + y_2^2 + x_2^2 + x_1^2 + z_1^2 + z_2^2 \right) \] (3.14)
where the new constants \(\mu_i \) are related with the \(J_i \)'s as follows:
\[
\begin{align*}
J_1^2 &= -\mu_4 + \mu_1 - \mu_3 - \mu_2, \\
J_2^2 &= \mu_3 - \mu_4 + \mu_1 + \mu_2, \\
J_3^2 &= \mu_1 - \mu_3 + \mu_4 + \mu_2, \\
J_4^2 &= -\mu_2 + \mu_1 + \mu_3 + \mu_4
\end{align*}
\] (3.15)

One can notice that the Hamiltonian (3.14) is the sum of a multiple of the Casimir function \(H_0 \) of the standard Lie-Poisson structure, and the classical analogue
\[H_{XYZ} = 2(\mu_4 x_2 x_1 + \mu_3 y_1 y_2 + \mu_2 z_1 z_2) \]
of the Hamiltonian of a (2-site) \(XYZ \) Heisenberg model.

We will, in the rest of the present paper, consider a special case, namely the one that goes under the name of \(XXZ \) model, that is we will study the case \(\mu_4 = \mu_3 \).

From the point of view of the Euler rigid body in \(so(4) \), this is tantamount to consider a rigid body with two principal inertia moments \(J^2_2 \) and \(J^2_3 \) that are equal.

4 The symmetric (or XXZ) Euler systems

In the case \(\mu_4 = \mu_3 \), the non trivial part of the Hamiltonian reads
\[H_{XXZ} = 2\mu_3 (x_2 x_1 + y_1 y_2) + 2\mu_2 z_1 z_2. \] (4.1)

This fact suggest to choose linear coordinates in \(g = so(3) \oplus so(3) \) adapted to the symmetries of \(H_{XXZ} \); the choice we will follow in the sequel will be to consider the sixtuple \(\{u_1, v_1, z_1, u_2, v_2, z_2\} \) related with the standard \(so(3) \oplus so(3) \) coordinates \(\{x_k, y_k, z_k\}_{k=1,2} \) by
\[
\begin{align*}
u_k &= x_k + iy_k, & v_k &= x_k - iy_k, & k = 1, 2.
\end{align*}
\] (4.2)

In these coordinates, the characteristic polynomial of the Lax matrix \(\hat{L}(\lambda) \) associated with the problem (that is, the one given in (3.7), with \(\mu_4 = \mu_3 \)) has the expression
\[
\lambda^4 (P_4(\rho)) + \lambda^3 (\rho^2 \mathcal{H}_0 + \rho \mathcal{H}_1 + \mathcal{H}_2) + \frac{1}{4} C_2^2
\]
where
\[
\begin{align*}
\mathcal{H}_0 &= u_1 v_1 + v_2 u_2 + z_1^2 + z_2^2, & C_2 &= u_2 v_2 + z_2^2 - u_1 v_1 - z_1^2 \\
\mathcal{H}_1 &= -2\mu_3 (u_2 v_1 + v_2 u_1) - 4 \mu_2 z_1 z_2 - 2\mu_1 \mathcal{H}_0 \\
\mathcal{H}_2 &= \mu_1^2 \mathcal{H}_0 + 4 \mu_1 \mu_2 z_1 z_2 + 2 \mu_3 (\mu_1 + \mu_2) (v_2 u_1 + u_2 v_1) \\
&\quad + \mu_2^2 (z_1^2 + z_2^2 - v_1 u_1 - v_2 u_2) - 2 \mu_3^2 (z_1 - z_2)^2
\end{align*}
\] (4.3)
The explicit expressions of the Poisson tensors (in the new coordinates) are, respectively,
\[
P_1 = \begin{bmatrix} A_1 & 0 \\ 0 & -A_2 \end{bmatrix} \quad \text{with} \quad A_i = \begin{bmatrix} 0 & 2z_i & -u_i \\ -2z_i & 0 & v_i \\ u_i & -v_i & 0 \end{bmatrix}
\] (4.4)
and $P_2 = \mu_1 P_1 + \Delta$, with P_1 still given by (4.4), and

\[
\Delta = \mu_2 \begin{bmatrix}
0 & 2z_2 & 0 & 0 & 0 & u_1 \\
0 & 0 & 0 & 0 & -v_1 \\
0 & u_2 & -v_2 & 0 \\
0 & -2z_1 & 0 \\
* & 0 & 0 \\
0 & 0 & 0 & 0 & -v_1 \end{bmatrix} + \mu_3 \begin{bmatrix}
0 & 0 & -u_2 & 0 & 2(z_2 - z_1) & -u_2 \\
0 & v_2 & 2(z_1 - z_2) & 0 & v_2 \\
0 & -u_1 & v_1 & 0 \\
0 & 0 & 0 & 0 & u_1 \\
* & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

(4.5)

(We indicate with a * the lower diagonal part of these antisymmetric tensors.)

The Hamiltonian vector field X_1 (i.e., up to a numeric factor, the Euler–Manakov $SO(4)$ field in the rotationally symmetric case), generated under P_1 by the Hamiltonian H_1 is explicitly given, in these new coordinates, by

\[
X_1 = 4(\mu_2 u_1 z_2 - \mu_3 u_2 z_1) \frac{\partial}{\partial u_1} - 4(\mu_2 v_1 z_2 - \mu_3 v_2 z_1) \frac{\partial}{\partial v_1} - 4(\mu_2 u_2 z_1 - \mu_3 u_1 z_2) \frac{\partial}{\partial u_2} + 4(\mu_2 v_2 z_1 - \mu_3 v_1 z_2) \frac{\partial}{\partial v_2} + 2\mu_3(u_2v_1 - u_1v_2)(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2})
\]

(4.6)

We will study the SoV problem for this Hamiltonian vector field, within the scheme of SoV for GZ systems of [9], resumed in Section 2. Namely we have to:

1. Find a suitable transversal vector field Z;
2. Consider the Poisson operators $P_1, Q := P_2 - X_1 \wedge Z$, as well as their restrictions to the generic symplectic leaves;
3. Find the DN coordinates associated with these restrictions;
4. Find the Jacobi Separation relations tying pairs of DN coordinates and the Hamiltonians.

One can check that a suitable transversal vector field for the problem is given by

\[
Z = \frac{1}{2u_1} \frac{\partial}{\partial v_1} + \frac{1}{2u_2} \frac{\partial}{\partial v_2};
\]

(4.7)

Namely, Z is a symmetry of P_1, that is, $\text{Lie}_Z(P_1) = 0$; Moreover,

\[
\text{Lie}_Z(H_0) = 1, \quad \text{Lie}_Z(C_2) = 0,
\]

and one indeed can check that the bivector

\[
Q = P_2 - X_1 \wedge Z
\]

(4.8)
turns out to be a (generically rank 4) Poisson operator compatible with \(P_1 \), that admits \(H_1 \) and \(C_2 \) as Casimir functions, that is, shares with the Poisson tensor \(P_1 \), associated with the standard Lie algebra structure of \(\mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3) \) the same symplectic leaves.

Remark. For further use, we notice that a direct computation shows that the second Lie derivative of the characteristic polynomial \(\text{Det}(L(\lambda) - (\rho \lambda)1) \) w.r.t. the transversal vector field \(Z \) vanishes as well,

\[
\text{Lie}_Z (\text{Lie}_Z (\text{Det}(L(\lambda) - (\rho \lambda)1))) = 0,
\]

that is, the condition for Stäckel separability is fulfilled.

From the theoretical framework recalled in Section 2 we know that the symplectic leaves of \(P_1 \) are four dimensional manifolds endowed with a pair of compatible Poisson structure, i.e., the restrictions of \(P_1 \) and of \(Q \) of these common Casimir function. Furthermore, thanks to the explicit expressions given in the first line of (4.3), in (open sets of) these symplectic leaves one can use, as coordinates, the four parameters

\[
u = \{ u_1, z_1, u_2, z_2 \},
\]

since one can express the coordinates \(v_1, v_2 \) as follows:

\[
v_1 = \frac{1}{2} \frac{H_0 - C_2 - 2 z_1^2}{u_1}, \quad v_2 = \frac{1}{2} \frac{H_0 + C_2 - 2 z_2^2}{u_2}.
\]

The restrictions \(P \) and \(Q \) of the Poisson structures \(P_1 \) and \(Q \) to the leaf \(S \) are represented by \(4 \times 4 \) matrices that have, in these coordinates, the explicit expressions

\[
P = \begin{bmatrix}
0 & -u_1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
* & 0 & u_2 & * \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad Q = \begin{bmatrix}
0 & -(\mu_3 u_2 + \mu_1 u_1) & 0 & \mu_2 u_1 - \mu_3 u_2 \\
0 & 0 & \mu_2 u_2 - \mu_3 u_1 & 0 \\
* & 0 & \mu_1 u_2 + \mu_3 u_1 & * \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

The transpose Nijenhuis operator \(N^* = P^{-1}Q \) is given by

\[
N^* = \begin{bmatrix}
\mu_3 \frac{u_2}{u_1} + \mu_1 & 0 & +\mu_2 \frac{u_2}{u_1} - \mu_3 & 0 \\
0 & \mu_3 \frac{u_2}{u_1} + \mu_1 & 0 & \mu_2 \frac{u_2}{u_1} - \mu_3 \\
\mu_2 \frac{u_1}{u_2} - \mu_3 & 0 & \mu_3 \frac{u_1}{u_2} + \mu_1 & 0 \\
0 & \mu_2 \frac{u_1}{u_2} - \mu_3 & 0 & \mu_3 \frac{u_1}{u_2} + \mu_1
\end{bmatrix}
\]
Its eigenvalues are
\[\lambda_1 = \mu_1 + \mu_2, \quad \lambda_2 = \mu_1 - \mu_2 + \mu_3 \left(\frac{u_1}{u_2} + \frac{u_2}{u_1} \right) \] (4.12)

From the general theory, we know that \(\lambda_2 \) is one of the DN coordinates we are looking for (which we need to complement with its conjugate coordinate \(\xi_2 \)), while we need to find both canonical coordinates relative to the constant eigenvalue \(\lambda_1 \).

The problem of finding the canonical coordinate conjugated to the non–constant eigenvalue \(\lambda_2 \) can be dealt with the idea of deforming the Hamiltonian polynomial. Indeed we consider the sum \(p_1 \) of the eigenvalues of \(N \),
\[p_1 = 2 \mu_1 + \mu_3 \left(\frac{u_1}{u_2} + \frac{u_2}{u_1} \right), \]
and the vector field \(Y = -P dp_1 \); it is given by
\[Y = \mu_3 G(u) \left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2} \right), \] (4.13)
where the function \(G(u) \) is given by
\[G(u) = \frac{u_2}{u_1} - \frac{u_1}{u_2}, \] (4.14)
and is connected with the eigenvalue \(\lambda_2 \) by
\[G(u)^2 = 4 + \left(\frac{\lambda_2 - \mu_1 + \mu_2}{\mu_3} \right)^2. \] (4.15)

Now we repeatedly apply the vector field \(Y \) to the polynomial containing the relevant Hamiltonians, that is
\[\mathcal{H}(\rho) = \rho^2 \mathcal{H}_0 + \rho \mathcal{H}_1 + \mathcal{H}_2. \]

By means of direct computation one can check that \(\text{Lie}_Y(\mathcal{H}) \) factors as
\[\text{Lie}_Y(\mathcal{H}) = \frac{4\mu_3 \rho - \mu_1 - \mu_2}{u_1 u_2} G(u) L(u) \]
with
\[L(u) = \mu_3 \left(z_2 u_1^2 + z_1 u_2^2 \right) - \mu_2 u_1 u_2 \left(z_1 + z_2 \right). \]

Since, quite obviously \(\text{Lie}_Y(u_1 u_2) = 0 \), and , thanks to (4.15),
\[\text{Lie}_Y(G(u)) = \{G(u), \lambda_2\}_P = 0, \]
we are left, for the computation of the second Lie derivative of \(\mathcal{H} \), with the computation of \(\text{Lie}_Y(L(u)) \). It gives
\[\text{Lie}_Y(L(u)) = \mu_3 G(u) (u_1 u_2 F(u)), \]
where
\[F(u) = -2\mu_2 + \left(\frac{u_1^2 + u_2^2}{u_1 u_2} \right) \mu_3 = \lambda_2 - (\mu_1 + \mu_2). \] (4.16)
So, the third Lie derivative of \mathcal{H} w.r.t. Y vanishes, and so the function

$$\xi_2 = \left. \frac{\text{Lie}_Y(\mathcal{H})}{\text{Lie}_Y(\text{Lie}_Y(\mathcal{H}))} \right|_{\rho=\lambda_1} = -\frac{1}{\mu_3 u_1 u_2} \left(\frac{L(u)}{G(u) F(u)} \right)$$

(4.17)

is the DN coordinate conjugated to λ_2 we were looking for.

The two functions $F(u)$ and $G(u)$ will play a role in the last task we will deal with, that is, the determination of the Jacobi separation relations.

Next we turn to consider the problem of finding DN coordinates associated with the constant eigenvalue $\lambda_1 = \mu_1 + \mu_2$ of the tensor N^* of Equation (4.11). Being this a constant eigenvalue, we have to find “by hands” the associated DN coordinates.

Fortunately enough the expression of the operator $N^* - \lambda_1$ is given by

$$\begin{pmatrix}
-\mu_2 + \frac{\mu_3 u_2}{u_1} & 0 & \frac{\mu_2 u_2}{u_1} - \mu_3 & 0 \\
0 & -\mu_2 + \frac{\mu_3 u_2}{u_1} & 0 & -\mu_2 + \frac{\mu_3 u_2}{u_1} \\
\frac{\mu_2 u_1}{u_2} - \mu_3 & 0 & \frac{\mu_3 u_1}{u_2} - \mu_2 & 0 \\
0 & \frac{\mu_3 u_1}{u_2} - \mu_2 & 0 & \frac{\mu_3 u_1}{u_2} - \mu_2 \\
\end{pmatrix}$$

(4.18)

Its kernel can be easily found to be generated by the two 1-forms

$$\alpha_1 = dz_2 - dz_1, \quad \alpha_2 = (\mu_3 u_1 - \mu_2 u_2)du_1 + (\mu_3 u_2 - \mu_2 u_1)du_2$$

that integrate, respectively, to the functions

$$\zeta_1 = z_2 - z_1, \quad \theta_1 = \frac{1}{2} \mu_3 u_1^2 - \mu_2 u_1 u_2 + \frac{1}{2} \mu_3 u_2^2.$$

A direct computation shows that $\{\zeta_1, \theta_1\}_P = -2\theta_1$, and so the DN coordinate conjugated to ζ_1 is $\xi_1 = -\frac{1}{2} \log \theta_1$. Thus, we have found, on the generic common symplectic leaf S of P_1 and Q, the desired set of DN coordinates $(\zeta_1, \xi_1 = -\frac{1}{2} \log \theta_1, \lambda_1, \xi_2)$. It can be noticed that, along with the two Casimirs C_1, C_2, they provide a set of coordinates in a Zariski open subset of the phase space $\mathfrak{so}(4) \simeq \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

What we are left with the determination of the Jacobi separation relations, namely we have to seek for two relations of the form

$$\Phi_1(\mathbf{H}; \zeta_1, \xi_1) = 0, \quad \Phi_2(\mathbf{H}; \lambda_2, \xi_2) = 0,$$

(4.19)

tying pairs of DN coordinates and the conserved quantities $\mathbf{H} = \{C_2, \mathcal{H}_0, \mathcal{H}_1, \mathcal{H}_2\}$ of (4.3).

Owing to the different ways the separation coordinates were found, and, especially, the fact that one of the separating momenta is an additional constant of the motion, we expect that Φ_1 and Φ_2 have different functional dependence on their variables; so, instead of trying to use the spectral curve relations we directly seek for the Jacobi relations (4.19), by means of explicit calculations. Since the characteristic condition for Stäckel separability is verified in our case (see Equation (4.9)), we can look for Jacobi relation that are affine functions in the Casimirs and the Hamiltonians.
Let us first consider $\Phi_1(\mathbf{H}; \zeta_1, \xi_1) = 0$; in this respect, one can notice that ζ_1 is an additional constant of the motion. Indeed, form the form of the Euler vector field (4.6), we easily ascertain that \{\mathcal{H}_1, \zeta_1\}_P = 0 and a direct computation (or a careful examination of the generalized Lenard relations associated with P, Q) shows that ζ_1 commutes with \mathcal{H}_2 as well.

So, there must be a functional relation between $\mathcal{H}_0, C_2, \mathcal{H}_1, \mathcal{H}_2$ and $\zeta_1 = z_1 - z_2$ alone, that is, we expect Φ_1 to be independent of ξ_1. Taking into account that the elements \mathbf{H} are quadratic functions of z_1, z_2, we look for a relation of the form

$$\Phi_1 = \alpha \zeta_1^2 + \mathcal{H}_1 + \beta \mathcal{H}_2 + \gamma_1 \mathcal{H}_0 + \gamma_2 C_2; \quad (4.20)$$

for some unknown constants $\alpha, \beta, \gamma_i, i = 1, \ldots, 2$. Indeed such a relation can be found with, respectively,

$$\alpha = 2 \frac{\mu_3^2 - \mu_2^2}{\mu_1 + \mu_2}, \quad \beta = \frac{1}{\mu_1 + \mu_2}, \quad \gamma_1 = \mu_1 + \mu_2, \quad \gamma_2 = 0. \quad (4.21)$$

To find the second separation relation is slightly more involved; still the idea is to look for a relation quadratic in ξ_2, and affine in $\mathcal{H}_0, C_2, \mathcal{H}_1, \mathcal{H}_2$, with coefficients that may depend non trivially on the coordinate λ_2, i.e. a relation of the form

$$\Phi_2 = p(\lambda_2)\xi_2^2 + q_1(\lambda_2)\mathcal{H}_1 + q_2(\lambda_2)\mathcal{H}_2 - \Psi(\lambda_2, \mathcal{H}_0, C_2), \quad (4.22)$$

for some functions p, q_1, q_2 that depend only on λ_2, and for an unknown function $\Psi(\lambda_2; \mathcal{H}_0, C_2)$, affine in the C_i’s. After a direct computation one sees that the problem can be solved, and that the second separation relation has the form (4.22), with

$$q_1 = \lambda_2, \quad q_2 = 1, \quad p = -2\mu_3^2(F(u)^2G(u)^2), \quad \Psi = \lambda_2^2 \mathcal{H}_0 - \mu_3 F(u)G(u) C_2, \quad (4.23)$$

where the functions $G(u)$ and $F(u)$ are given respectively by (4.14) and (4.15).

It can be noticed that the relation (4.23) is quadratic in the momentum ξ_2, and is algebraic – rather than polynomial - in the coordinate λ_2, owing to the relation (4.15). The question whether these techniques might be useful in the study of the general $\mathfrak{so}(4)$ Euler–Manakov top is still under investigation.

Acknowledgments

This work was partially supported by the European Community through the FP6 Marie Curie RTN ENICMA (Contract number MRTN-CT-2004-5652), and by the by the European Science Foundation project MISGAM.

